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ABSTRACT: Effective bug detection is pivotal in software development, with the identification and localization of defects being 

crucial for robust applications. In Python-based programs, the conventional bug detection process relies on a Python interpreter, causing 

workflow interruptions due to sequential error detection. As Python’s adoption surges, the demand for efficient bug detection tools 

intensifies. This paper addresses the challenges associated with bug detection in Python, focusing on the prevalence of built-in type 

bugs that can lead to code crashes. 

Building on recent advancements, this survey explores bug detection methodologies across programming languages, empha- sizing 

Python, JavaScript, and C. The diverse array of techniques covered includes static and dynamic analyses, machine learning- based bug 

detection, and predictive analysis engines(specifically deep-learning based). The survey provides insights into bug de- tection in Python 

programs, offering perspectives on addressing built-in type bugs and optimizing tools within the language’s constraints. 
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I.  INTRODUCTION 

In the realm of programming languages, Python has firmly 

established itself as a foundational tool, prized for its adapt- ability 

across diverse domains such as web development, data science, 

and machine learning. Despite its widespread use, Python, like any 

language, is not immune to bugs. These issues range from the 

common syntax errors to more intricate challenges associated 

with built-in types. 

Built-in types in Python contribute significantly to the land- 

scape of bugs developers encounter. These bugs can manifest as 

unexpected behaviors due to the language’s flexibility with 

variables and data structures. Understanding and addressing built-

in type bugs is crucial for maintaining code integrity and 

ensuring the reliable functionality of Python programs.The 

possible errors in python code are listed below in Figure 1. 

The need for an advanced bug detection system in Python arises 

from the language’s unique characteristics. Traditional bug 

detection methods, such as static and dynamic analyses, face 

challenges in effectively handling the interpretative nature of 

Python. Consequently, there is a growing demand for a systematic 

bug detection solution that can comprehensively analyze Python 

code, identifying both syntactic errors and subtle logical issues. 

Transformers emerge as a promising solution for bug de- 

tection in Python.Unlike Long Short-Term Memory (LSTM) 

models, which have been employed for bug detection in the past, 

transformers demonstrate a notable advantage. LSTMs, while  

 

effective in certain applications, exhibit limitations in capturing 

long-range dependencies within sequences. Opti- mized for 

sequential data processing, transformers employ self-attention 

mechanisms, excelling in capturing code seman- tics and 

understanding relationships within the code. 

         Fig. 1. Common errors in Python codebases 

 

II. RELATED WORK 

The study presents a feedback approach designed to aid novice 

programmers in the debugging process. The authors’ objective is 

to pinpoint errors in a given code by analyzing its static structure. 

Beginning with an introductory section discussing debugging 

challenges faced by novice programmers and potential solutions, 

the study explores the implementation of tools such as syntax error 

highlighting in advanced code editors. The authors propose a bug 

identification methodology leveraging solutions and a language 

model based on LSTM networks. The model’s architecture is 
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detailed, encompassing both LSTM networks and the proposed 

feedback mechanism. The study outlines methods for 

instruction, evaluation, and bug detection. Through the analysis 

of erroneous code sam- ples gathered from the AOJ (Adaptive 

Online Judge), the authors elucidate the bug identification process 

within the model. Results are presented and scrutinized, including 

the identification of the most effective bug detection model and 

factors contributing to its limitations in certain scenarios. The 

report concludes by discussing potential avenues for future 

research, particularly the exploration of Bidirectional LSTM 

networks for bug identification. [1] 

This research study suggests a technique to anticipate errors in 

software code using entropy-based metrics and neural network-

based regression. The study compares the perfor- mance of this 

technique with statistical linear regression and analyses the 

relevance of bug prediction in software engi- neering. The study 

is broken into segments addressing the code update process, data 

collection and extraction procedure, results of statistical linear 

regression(SLR), results of neural network-based 

regression(NBR), threats to validity, and future work. The authors 

give references to important work and technologies employed in 

their research, bringing vital insights into bug prediction 

methodologies and their utility in software development [2]. 

The paper introduces Bugram, a novel bug detection tech- nique 

that identifies potential weaknesses, inappropriate code usage, or 

unusual software behaviors using n-gram language models. 

Unlike traditional rule-based methods, Bugram em- ploys a 

probabilistic approach to evaluate the likelihood of token 

sequences within a program, flagging sequences with low 

probabilities as potential issues. The authors evaluate Bugram on 

16 open-source Java applications and compare its effectiveness 

to three other bug discovery tools based on graphs and rules. The 

results demonstrate Bugram’s ability to detect flaws that might 

be overlooked by conventional methods, suggesting its potential 

as a supplementary approach to enhance software reliability. 

Furthermore, the research examines the utilization of n-gram 

models with different gram sizes, finding that 3-gram models are 

the most effective for bug discovery compared to other models. 

The authors also discuss potential future directions for Bugram, 

including its expansion to other programming languages and its 

integration with rule- based techniques to improve bug detection 

capabilities. [3]. 

This study introduces a predictive analysis engine in Python that 

captures execution records, encodes traces—including un- 

executed branches—into symbolic constraints, and introduces 

symbolic variables to represent input values, their dynamic types, 

and feature sets for analyzing their variations. By addressing these 

constraints, the engine identifies flaws and the inputs that trigger 

them. The method proves particularly effective in examining 

complex real-world programs withnumerous dynamic features, 

owing to its clever encoding design which was based on the traces. 

The evaluation reveals that the approach uncovers 46 flaws from 

11 real-world ap- plications, including 16 previously unidentified 

vulnerabilities, demonstrating its utility as a tool for detecting bugs 

in Python systems. [4] 

This document provides a comprehensive benchmark of 453 

authenticated JavaScript faults derived from widely recognized 

JavaScript server-side apps.Each identified bug includes de- tailed 

information such as the bugs report, the test samples used to find 

it, and the corresponding patch for resolution. The benchmark offers 

complete access to both flawed and corrected versions of the 

programs, along with the ability to execute associated test cases. 

This facilitates highly reproducible em- pirical research and enables 

comparisons of JavaScript analysis and testing tools with 

ease.Additionally, the authors conducted both quantitative and 

qualitative evaluations to demonstrate the variety of defects 

present in the benchmark, underscoring its potential for software 

analysis and testing research in bugs prediction, and fault 

localization for JavaScript. This benchmark aims to fill the void 

of a centralized repository for JavaScript applications and faults, 

serving as a significant resource for the research community. [5]. 

This research introduces two datasets, ManyBugs and Intro- 

Class, comprising a total of 1,183 errors found in 15 C pro- grams. 

These datasets are prepared to facilitate comparison of automated 

software repair algorithms and provide foundational experimental 

results for three established repair techniques. The authors argue 

that the absence of standardized benchmarks has hindered progress 

in automated software repair research, and they propose that their 

datasets can help address this issue. The document provides 

comprehensive details on the datasets’ structure, including 

metadata files, test cases, and shell scripts for both white-box and 

black-box testing. Additionally, the authors discuss the 

classification of errors in the datasets, covering aspects such as 

issue priority, security relevance, and the types of modifications 

made in patches provided by devel- opers. Additionally, the 

research provides initial experimental outcomes for current repair 

algorithms. such as GenProg, applied to both datasets. The authors 

anticipate that these datasets will facilitate qualitative analysis of 

program repair methodologies and encourage the development of 

new repair techniques. [6]. 

This paper introduces the EXCEPY Python benchmark, gen- 

erated from 15 open-source projects present on GitHub. The 

benchmark, encompassing 180 faults in Python built-in types, 

seeks to reproduce and measure detection tools’ performance. It 

solves limits in existing benchmarks, offering insights into real-

world reproducible failures for tool evaluation and fur- ther study. 

The work evaluates problems to the benchmark’s validity and 

offers future research pathways, leading to a comprehensive 

Python bug benchmark for researchers and practitioners. [7] 

This paper represents an initial exploration into the applica- tion 
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of ML techniques for identifying defects in C programs. The 

authors examine the effectiveness of static program anal-ysis in 

defect detection and the challenges associated with its use. They 

suggest leveraging ML methods to assist in catego- rization tasks, 

particularly when coupled with a large corpus of annotated 

codebase. Three off-the-shelf ML algorithms are employed 

along with a substantial corpus of programs available for training 

and evaluation. The authors compare the findings obtained through 

ML with those of the static program analysis tool which was 

internally used at Oracle. Although the initial findings show 

promise, further exploration indicates that the ML methods 

utilized are inadequate for static program analysis tools due to 

their low accuracy. [8]. 

In this research, BugAID is introduced as a novel ap- proach 

for autonomously learning bug fixing change cate- gories, 

focusing on language construct modifications in server- side 

JavaScript applications. Through an analysis of 105,133 changes 

across 134 JavaScript projects, the study identifies 219 common 

bug-fixing change types and examines 13 recur- ring issue 

patterns deemed to impose significant maintenance overheads, 

presenting potential candidates for automated tool assistance. 

Additionally, the study provides the BugAID toolkit and an 

empirical dataset, both freely accessible, facilitating the replication 

of the evaluation and empirical inquiry. [9]. 

This work focuses on the extraction and modelling of rich 

semantics and relationships from problem reports, that are critical 

for bug analysis tasks such as bug understanding, localization, and 

fixing. The authors suggest the use of knowl- edge graphs for 

representation of knowledge and manage- ment, since they 

adequately transmit complicated semantics in heterogeneous 

data. Entities and the relationships between them are crucial parts 

in the knowledge graph, with entities being the smallest 

knowledge unit and relations reflecting semantic interconnections 

between entities. The study analyses the challenges of extracting 

bug relations and entities from bug reports, such as the free-style 

and unstructured nature of the data, the diverse information types 

contained in bug reports, and the sparsity of relation features. The 

authors propose a hybrid model based on Bi-LSTM-RNN for 

extracting bug relations and entities. [10]. 

The study comprises bug fix analysis and problem cause 

categorization. The study presents the Orthogonal Defect Clas- 

sification (ODC) approach, which studies defects in depth and 

assists with defect discovery, eradication, and prevention. The 

ODC approach has eight orthogonal defect attribute categories tied 

to codebase. The research also discusses the creation of a tree 

structure for representing bug fixes and a tree- based 

convolutional network for issue cause categorization. The 

objective is to classify bugs into separate bug cause groups 

depending on the link between the the source of defects and bug 

repair. [11]. 

This article introduces a novel approach for spontaneously 

generating bug detectors based on names through ML. Unlike 

previous name-based bug detectors, DeepBugs distinguishes itself 

by analyzing identifier names using semantic represen- tations, 

learning bug detectors instead of manual construction, exploring a 

broader range of bug patterns, and focusing on a dynamically 

typed programming language. The frameworkframes detection of 

bugs as a problem of classification and trains a classifier using 

examples of both correct and faulty code. This technology produces 

effective bug detectors capable of identifying various issues in real-

world JavaScript code. DeepBugs offers a hopeful pathway to 

improve the efficiency and efficacy of problem identification in 

software develop- ment. [12]. 

This study introduces NP-CNN, a novel convolutional neu- ral 

network designed for bug localization by learning com- mon 

characteristics from both plain English descriptions and codebase 

in programming languages. NP-CNN utilizes lexical information as 

well as program structure data to enhance bug localization 

accuracy, surpassing existing techniques. The model consists of a 

lexical feature extraction layer and a cross-language feature fusion 

layer, enabling the extraction of semantic information from both 

lexical and program struc- tural perspectives. Through 

experimental analysis conducted on well-known software projects, 

NP-CNN demonstrates sig- nificant advantages in automatically 

detecting troublesome codebase through bug reports.. [13] 

This study introduces LS-CNN, a novel deep learning model 

aimed at enhancing bug identification by utilizing the sequen- tial 

structure of codebase. This technique integrates LSTM and CNN 

architectures to spontaneously identify potential problematic 

codebase segments based on bug reports. By incorporating the 

sequential structure of codebase, LS-CNN surpasses limitations of 

previous bug localization methods, providing additional insights 

beyond lexical and structural in- formation. The model’s 

architecture involves utilizing CNN to extract semantic features 

from code statements while preserv- ing their sequential integrity. 

Subsequently, LSTM is employed to capture the sequential 

relationships between statements in the context of program 

structure. LS-CNN demonstrates significant improvements over 

state-of-the-art techniques in localizing challenging files, offering 

a promising avenue for bug identification by effectively harnessing 

the sequential nature of codebase. [14] 

This work proposes HOPPITY, a learning-based tool for 

discovering and correcting defects in Javascript applications via 

graph transformations. By training on a massive dataset of bug-

fixes from Github, HOPPITY leverages a graph neural network to 

identify patterns of proper and erroneous code, enabling it to 

effectively discover and patch faults in a range of systems. The 

authors demonstrate HOPPITY’s effectiveness in discovering a 

wide range of faults, including functional concerns and refactoring 

modifications, and compare its per- formance with other state-of-
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the-art tools, exhibiting superior accuracy and efficiency. Overall, 

HOPPITY offers a realistic and effective solution to preventing 

faults in production, par- ticularly in the setting of sophisticated 

codebases. [15]. 

 

III. COMPARISON   STUDY 

A. Long Short-Term Memory (LSTM) 

LSTM networks stand as a significant breakthrough in deep 

learning, designed specifically to tackle the complexities 

ofmodeling sequential dependencies across various datasets. Un- 

like conventional recurrent neural networks (RNNs), LSTMs 

excel in capturing and preserving long-term dependencies across 

extensive sequences, making them highly adept for tasks such as 

NLP, time series analysis, and gesture recog- nition. The 

architecture of an LSTM incorporates specialized memory cells 

and gating mechanisms, enabling it to selectively store and retrieve 

information. thereby addressing challenges like the vanishing 

gradient problem commonly encountered in traditional RNNs. 

 

B. Convolutional Neural Networks(CNN) 

A CNN is a type of deep learning model which was designed 

to process data which is like grid, like images or videos. 

Convolutional layers apply filters to find patterns and features in 

the input data, pooling layers then work to reduce spatial 

dimensions, activation functions produce non- linearity, and fully 

connected layers learn complex correlations and generate 

predictions. CNNs stack these components and use techniques like 

backpropagation to determine the optimal weights and biases 

during training to minimize a given loss function. CNNs have 

revolutionized tasks like object detection and image recognition, 

making them an indispensable tool in the domain of Image 

processing & CV and beyond. 

 

 

C. Bidirectional Long Short-Term Memory (BiLSTM) 

BiLSTM networks mark a notable stride forward within the 

domain of deep learning, particularly in managing sequential data. 

Unlike conventional LSTMs, BiLSTMs introduce bidi- rectional 

processing, empowering them to grasp contextual cues from both 

preceding and subsequent inputs. This bidirec- tional functionality 

proves advantageous in tasks demanding a deep understanding of 

temporal dependencies, including speech recognition, sentiment 

analysis, and named entity recognition. The BiLSTM architecture 

incorporates two inter- connected LSTM layers—one processes the 

input sequence forwards, while the other does so backwards—

facilitating the network in efficiently assimilating information from 

both temporal directions. 

 
 

D. Decision Trees 

Decision Trees are a foundational machine learning algo- rithm, 

serving as interpretable and potent tools for classifica- tion and 

regression tasks. Their intrinsic structure involves a sequence of 

binary decisions, depicted as a tree-like arrange- ment, enabling 

intuitive visualization and understanding of decision-making 

procedures. The algorithm iteratively divides the input space using 

features, generating nodes signifying decision points and leaves 

indicating ultimate outcomes. Deci- sion Trees excel in situations 

where the connections between input features and target variables 

are intricate or non-linear. 

E. Random Forest(RF) 

Random Forest stands as a robust ensemble learning method in 

machine learning, versatile for both regression and clas- sification 

tasks. In its training phase, it generates numerous decision trees by 

chhosing random subset of the training data and a random 

selection of the characteristics. These individual trees’ predictions 

are then combined to produce the final prediction. Generally, 

classification tasks utilize the mode, while regression tasks employ 

the mean. Random Forest mitigates overfitting through feature 

selection and data randomization, resulting in a dependable and 

precise model. Its standout features encompass superior prediction 

accuracy, adept management of high-dimensional data, resilience 

against overfitting, and the ability to evaluate feature importance, 

cementing its widespread recognition in the field.  

 

IV.  COMPARISON    ANALYSIS 

Recurrent models such as LSTM networks are recognized for 

their capacity to grasp sequential dependencies within data, 

rendering them apt for discerning the intrinsic organization of code. 

However, LSTMs may struggle with their computational intensity, 

especially with large datasets. Convolutional Neural Networks 
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(CNNs) are adept at capturing local patterns and hierarchical 

representations in code but might lack the capacity to capture long-

term dependencies. Bidirectional LSTM Re- current Neural 

Networks (Bi-LSTM-RNN) attempt to address this limitation by 

capturing dependencies in both forward and backward 

directions, enhancing their ability to understand code intricacies. 

On the other hand, Random Forest, an ensem- ble method, provides 

robust predictions by combining multiple decision trees. It offers 

faster training times and is less sensi- tive to the need for large 

datasets, making it a pragmatic choice for bug detection, 

particularly when computational resources are limited. The 

interpretability of Random Forest can also be advantageous, 

aiding in understanding the reasoning behind bug predictions. 

The selection among these algorithms involves trade-offs. For 

instance, deep learning models like LSTM and Bi-LSTM- RNN 

excel in capturing sequential and long-range depen- dencies but 

may demand substantial computational resources. CNNs leverage 

local patterns but may not capture long-term dependencies as 

effectively. Random Forest, while computa- tionally efficient and 

interpretable, may have limitations in modeling intricate code 

relationships. The selection should be in line with the precise 

needs of the bug detection task, taking into account factors like 

dataset magnitude, interpretability, and the availability of 

computational resources. Practical ex- perimentation and fine-

tuning are essential to determine the algorithm that best suits the 

characteristics of the codebase and the bugs targeted for 

detection. 

 

V.  CONCLUSION 

The research offers a comprehensive overview of con- 

temporary methodologies of bug detection, spanning various 

aspects of software development. It begins by emphasizing the 

importance of assisting novice programmers through feed- back 

systems and leveraging LSTM-based approaches for problem 

identification, showcasing the potential of ML to streamline 

coding processes and boost productivity. Following this, diverse 

bug detection techniques are explored, ranging from entropy-

based metrics to probabilistic n-gram LM’s and symbolic 

constraint encoding for trace-based recognition in Python code. 

These studies underscore the diversity of meth- ods employed 

across different programming languages. 

Furthermore, the research highlights the significance of 

benchmarking endeavors and the implementation of innovative 

bug analysis tools, such as knowledge graphs, orthogonal defect 

classification, and DL models like NP-CNN and HOP- PITY. 

These tools leverage conceptual representations, exploit the 

sequential nature of codebase, and utilize graph transfor- mations 

to improve accuracy and efficiency in bug detection. Together, 

these discoveries play a pivotal role in enhancing bug 

identification processes, revealing effective strategies that 

harmonize traditional software engineering principles with cutting-

edge advancements in machine learning, ultimately bolstering 

program reliability. 
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