
Engineering and Technology Journal e-ISSN: 2456-3358

Volume 09 Issue 04 April-2024, Page No.- 3772-3777

DOI: 10.47191/etj/v9i04.15, I.F. – 8.227

© 2024, ETJ

3772 Puneeth Batchu1, ETJ Volume 9 Issue 04 April 2024

Python source code Analysis for Bug Detection using Transformers

Puneeth Batchu1, Tanish Rohil Gali2, Srujana Inturi3

1,2 Department of Computer Science and Engineering Chaitanya Bharathi Institute of Technology, Gandipet, Hyderabad, India
3Assistant Professor, Department of Computer Science and Engineering, Chaitanya Bharathi Institute of Technology, Gandipet,

Hyderabad, India

ABSTRACT: Effective bug detection is pivotal in software development, with the identification and localization of defects being

crucial for robust applications. In Python-based programs, the conventional bug detection process relies on a Python interpreter, causing

workflow interruptions due to sequential error detection. As Python’s adoption surges, the demand for efficient bug detection tools

intensifies. This paper addresses the challenges associated with bug detection in Python, focusing on the prevalence of built-in type

bugs that can lead to code crashes.

Building on recent advancements, this survey explores bug detection methodologies across programming languages, empha- sizing

Python, JavaScript, and C. The diverse array of techniques covered includes static and dynamic analyses, machine learning- based bug

detection, and predictive analysis engines(specifically deep-learning based). The survey provides insights into bug de- tection in Python

programs, offering perspectives on addressing built-in type bugs and optimizing tools within the language’s constraints.

KEYWORDS: Python, Built-in type bugs, Bug Detection, Static Analysis, Dynamic Analysis, Predictive Analysis

I. INTRODUCTION

In the realm of programming languages, Python has firmly

established itself as a foundational tool, prized for its adapt- ability

across diverse domains such as web development, data science,

and machine learning. Despite its widespread use, Python, like any

language, is not immune to bugs. These issues range from the

common syntax errors to more intricate challenges associated

with built-in types.

Built-in types in Python contribute significantly to the land-

scape of bugs developers encounter. These bugs can manifest as

unexpected behaviors due to the language’s flexibility with

variables and data structures. Understanding and addressing built-

in type bugs is crucial for maintaining code integrity and

ensuring the reliable functionality of Python programs.The

possible errors in python code are listed below in Figure 1.

The need for an advanced bug detection system in Python arises

from the language’s unique characteristics. Traditional bug

detection methods, such as static and dynamic analyses, face

challenges in effectively handling the interpretative nature of

Python. Consequently, there is a growing demand for a systematic

bug detection solution that can comprehensively analyze Python

code, identifying both syntactic errors and subtle logical issues.

Transformers emerge as a promising solution for bug de-

tection in Python.Unlike Long Short-Term Memory (LSTM)

models, which have been employed for bug detection in the past,

transformers demonstrate a notable advantage. LSTMs, while

effective in certain applications, exhibit limitations in capturing

long-range dependencies within sequences. Opti- mized for

sequential data processing, transformers employ self-attention

mechanisms, excelling in capturing code seman- tics and

understanding relationships within the code.

 Fig. 1. Common errors in Python codebases

II. RELATED WORK

The study presents a feedback approach designed to aid novice

programmers in the debugging process. The authors’ objective is

to pinpoint errors in a given code by analyzing its static structure.

Beginning with an introductory section discussing debugging

challenges faced by novice programmers and potential solutions,

the study explores the implementation of tools such as syntax error

highlighting in advanced code editors. The authors propose a bug

identification methodology leveraging solutions and a language

model based on LSTM networks. The model’s architecture is

https://doi.org/10.47191/etj/v9i04.15

“Python source code Analysis for Bug Detection using Transformers”

3773 Puneeth Batchu1, ETJ Volume 9 Issue 04 April 2024

detailed, encompassing both LSTM networks and the proposed

feedback mechanism. The study outlines methods for

instruction, evaluation, and bug detection. Through the analysis

of erroneous code sam- ples gathered from the AOJ (Adaptive

Online Judge), the authors elucidate the bug identification process

within the model. Results are presented and scrutinized, including

the identification of the most effective bug detection model and

factors contributing to its limitations in certain scenarios. The

report concludes by discussing potential avenues for future

research, particularly the exploration of Bidirectional LSTM

networks for bug identification. [1]

This research study suggests a technique to anticipate errors in

software code using entropy-based metrics and neural network-

based regression. The study compares the perfor- mance of this

technique with statistical linear regression and analyses the

relevance of bug prediction in software engi- neering. The study

is broken into segments addressing the code update process, data

collection and extraction procedure, results of statistical linear

regression(SLR), results of neural network-based

regression(NBR), threats to validity, and future work. The authors

give references to important work and technologies employed in

their research, bringing vital insights into bug prediction

methodologies and their utility in software development [2].

The paper introduces Bugram, a novel bug detection tech- nique

that identifies potential weaknesses, inappropriate code usage, or

unusual software behaviors using n-gram language models.

Unlike traditional rule-based methods, Bugram em- ploys a

probabilistic approach to evaluate the likelihood of token

sequences within a program, flagging sequences with low

probabilities as potential issues. The authors evaluate Bugram on

16 open-source Java applications and compare its effectiveness

to three other bug discovery tools based on graphs and rules. The

results demonstrate Bugram’s ability to detect flaws that might

be overlooked by conventional methods, suggesting its potential

as a supplementary approach to enhance software reliability.

Furthermore, the research examines the utilization of n-gram

models with different gram sizes, finding that 3-gram models are

the most effective for bug discovery compared to other models.

The authors also discuss potential future directions for Bugram,

including its expansion to other programming languages and its

integration with rule- based techniques to improve bug detection

capabilities. [3].

This study introduces a predictive analysis engine in Python that

captures execution records, encodes traces—including un-

executed branches—into symbolic constraints, and introduces

symbolic variables to represent input values, their dynamic types,

and feature sets for analyzing their variations. By addressing these

constraints, the engine identifies flaws and the inputs that trigger

them. The method proves particularly effective in examining

complex real-world programs withnumerous dynamic features,

owing to its clever encoding design which was based on the traces.

The evaluation reveals that the approach uncovers 46 flaws from

11 real-world ap- plications, including 16 previously unidentified

vulnerabilities, demonstrating its utility as a tool for detecting bugs

in Python systems. [4]

This document provides a comprehensive benchmark of 453

authenticated JavaScript faults derived from widely recognized

JavaScript server-side apps.Each identified bug includes de- tailed

information such as the bugs report, the test samples used to find

it, and the corresponding patch for resolution. The benchmark offers

complete access to both flawed and corrected versions of the

programs, along with the ability to execute associated test cases.

This facilitates highly reproducible em- pirical research and enables

comparisons of JavaScript analysis and testing tools with

ease.Additionally, the authors conducted both quantitative and

qualitative evaluations to demonstrate the variety of defects

present in the benchmark, underscoring its potential for software

analysis and testing research in bugs prediction, and fault

localization for JavaScript. This benchmark aims to fill the void

of a centralized repository for JavaScript applications and faults,

serving as a significant resource for the research community. [5].

This research introduces two datasets, ManyBugs and Intro-

Class, comprising a total of 1,183 errors found in 15 C pro- grams.

These datasets are prepared to facilitate comparison of automated

software repair algorithms and provide foundational experimental

results for three established repair techniques. The authors argue

that the absence of standardized benchmarks has hindered progress

in automated software repair research, and they propose that their

datasets can help address this issue. The document provides

comprehensive details on the datasets’ structure, including

metadata files, test cases, and shell scripts for both white-box and

black-box testing. Additionally, the authors discuss the

classification of errors in the datasets, covering aspects such as

issue priority, security relevance, and the types of modifications

made in patches provided by devel- opers. Additionally, the

research provides initial experimental outcomes for current repair

algorithms. such as GenProg, applied to both datasets. The authors

anticipate that these datasets will facilitate qualitative analysis of

program repair methodologies and encourage the development of

new repair techniques. [6].

This paper introduces the EXCEPY Python benchmark, gen-

erated from 15 open-source projects present on GitHub. The

benchmark, encompassing 180 faults in Python built-in types,

seeks to reproduce and measure detection tools’ performance. It

solves limits in existing benchmarks, offering insights into real-

world reproducible failures for tool evaluation and fur- ther study.

The work evaluates problems to the benchmark’s validity and

offers future research pathways, leading to a comprehensive

Python bug benchmark for researchers and practitioners. [7]

This paper represents an initial exploration into the applica- tion

“Python source code Analysis for Bug Detection using Transformers”

3774 Puneeth Batchu1, ETJ Volume 9 Issue 04 April 2024

of ML techniques for identifying defects in C programs. The

authors examine the effectiveness of static program anal-ysis in

defect detection and the challenges associated with its use. They

suggest leveraging ML methods to assist in catego- rization tasks,

particularly when coupled with a large corpus of annotated

codebase. Three off-the-shelf ML algorithms are employed

along with a substantial corpus of programs available for training

and evaluation. The authors compare the findings obtained through

ML with those of the static program analysis tool which was

internally used at Oracle. Although the initial findings show

promise, further exploration indicates that the ML methods

utilized are inadequate for static program analysis tools due to

their low accuracy. [8].

In this research, BugAID is introduced as a novel ap- proach

for autonomously learning bug fixing change cate- gories,

focusing on language construct modifications in server- side

JavaScript applications. Through an analysis of 105,133 changes

across 134 JavaScript projects, the study identifies 219 common

bug-fixing change types and examines 13 recur- ring issue

patterns deemed to impose significant maintenance overheads,

presenting potential candidates for automated tool assistance.

Additionally, the study provides the BugAID toolkit and an

empirical dataset, both freely accessible, facilitating the replication

of the evaluation and empirical inquiry. [9].

This work focuses on the extraction and modelling of rich

semantics and relationships from problem reports, that are critical

for bug analysis tasks such as bug understanding, localization, and

fixing. The authors suggest the use of knowl- edge graphs for

representation of knowledge and manage- ment, since they

adequately transmit complicated semantics in heterogeneous

data. Entities and the relationships between them are crucial parts

in the knowledge graph, with entities being the smallest

knowledge unit and relations reflecting semantic interconnections

between entities. The study analyses the challenges of extracting

bug relations and entities from bug reports, such as the free-style

and unstructured nature of the data, the diverse information types

contained in bug reports, and the sparsity of relation features. The

authors propose a hybrid model based on Bi-LSTM-RNN for

extracting bug relations and entities. [10].

The study comprises bug fix analysis and problem cause

categorization. The study presents the Orthogonal Defect Clas-

sification (ODC) approach, which studies defects in depth and

assists with defect discovery, eradication, and prevention. The

ODC approach has eight orthogonal defect attribute categories tied

to codebase. The research also discusses the creation of a tree

structure for representing bug fixes and a tree- based

convolutional network for issue cause categorization. The

objective is to classify bugs into separate bug cause groups

depending on the link between the the source of defects and bug

repair. [11].

This article introduces a novel approach for spontaneously

generating bug detectors based on names through ML. Unlike

previous name-based bug detectors, DeepBugs distinguishes itself

by analyzing identifier names using semantic represen- tations,

learning bug detectors instead of manual construction, exploring a

broader range of bug patterns, and focusing on a dynamically

typed programming language. The frameworkframes detection of

bugs as a problem of classification and trains a classifier using

examples of both correct and faulty code. This technology produces

effective bug detectors capable of identifying various issues in real-

world JavaScript code. DeepBugs offers a hopeful pathway to

improve the efficiency and efficacy of problem identification in

software develop- ment. [12].

This study introduces NP-CNN, a novel convolutional neu- ral

network designed for bug localization by learning com- mon

characteristics from both plain English descriptions and codebase

in programming languages. NP-CNN utilizes lexical information as

well as program structure data to enhance bug localization

accuracy, surpassing existing techniques. The model consists of a

lexical feature extraction layer and a cross-language feature fusion

layer, enabling the extraction of semantic information from both

lexical and program struc- tural perspectives. Through

experimental analysis conducted on well-known software projects,

NP-CNN demonstrates sig- nificant advantages in automatically

detecting troublesome codebase through bug reports.. [13]

This study introduces LS-CNN, a novel deep learning model

aimed at enhancing bug identification by utilizing the sequen- tial

structure of codebase. This technique integrates LSTM and CNN

architectures to spontaneously identify potential problematic

codebase segments based on bug reports. By incorporating the

sequential structure of codebase, LS-CNN surpasses limitations of

previous bug localization methods, providing additional insights

beyond lexical and structural in- formation. The model’s

architecture involves utilizing CNN to extract semantic features

from code statements while preserv- ing their sequential integrity.

Subsequently, LSTM is employed to capture the sequential

relationships between statements in the context of program

structure. LS-CNN demonstrates significant improvements over

state-of-the-art techniques in localizing challenging files, offering

a promising avenue for bug identification by effectively harnessing

the sequential nature of codebase. [14]

This work proposes HOPPITY, a learning-based tool for

discovering and correcting defects in Javascript applications via

graph transformations. By training on a massive dataset of bug-

fixes from Github, HOPPITY leverages a graph neural network to

identify patterns of proper and erroneous code, enabling it to

effectively discover and patch faults in a range of systems. The

authors demonstrate HOPPITY’s effectiveness in discovering a

wide range of faults, including functional concerns and refactoring

modifications, and compare its per- formance with other state-of-

“Python source code Analysis for Bug Detection using Transformers”

3775 Puneeth Batchu1, ETJ Volume 9 Issue 04 April 2024

the-art tools, exhibiting superior accuracy and efficiency. Overall,

HOPPITY offers a realistic and effective solution to preventing

faults in production, par- ticularly in the setting of sophisticated

codebases. [15].

III. COMPARISON STUDY

A. Long Short-Term Memory (LSTM)

LSTM networks stand as a significant breakthrough in deep

learning, designed specifically to tackle the complexities

ofmodeling sequential dependencies across various datasets. Un-

like conventional recurrent neural networks (RNNs), LSTMs

excel in capturing and preserving long-term dependencies across

extensive sequences, making them highly adept for tasks such as

NLP, time series analysis, and gesture recog- nition. The

architecture of an LSTM incorporates specialized memory cells

and gating mechanisms, enabling it to selectively store and retrieve

information. thereby addressing challenges like the vanishing

gradient problem commonly encountered in traditional RNNs.

B. Convolutional Neural Networks(CNN)

A CNN is a type of deep learning model which was designed

to process data which is like grid, like images or videos.

Convolutional layers apply filters to find patterns and features in

the input data, pooling layers then work to reduce spatial

dimensions, activation functions produce non- linearity, and fully

connected layers learn complex correlations and generate

predictions. CNNs stack these components and use techniques like

backpropagation to determine the optimal weights and biases

during training to minimize a given loss function. CNNs have

revolutionized tasks like object detection and image recognition,

making them an indispensable tool in the domain of Image

processing & CV and beyond.

C. Bidirectional Long Short-Term Memory (BiLSTM)

BiLSTM networks mark a notable stride forward within the

domain of deep learning, particularly in managing sequential data.

Unlike conventional LSTMs, BiLSTMs introduce bidi- rectional

processing, empowering them to grasp contextual cues from both

preceding and subsequent inputs. This bidirec- tional functionality

proves advantageous in tasks demanding a deep understanding of

temporal dependencies, including speech recognition, sentiment

analysis, and named entity recognition. The BiLSTM architecture

incorporates two inter- connected LSTM layers—one processes the

input sequence forwards, while the other does so backwards—

facilitating the network in efficiently assimilating information from

both temporal directions.

D. Decision Trees

Decision Trees are a foundational machine learning algo- rithm,

serving as interpretable and potent tools for classifica- tion and

regression tasks. Their intrinsic structure involves a sequence of

binary decisions, depicted as a tree-like arrange- ment, enabling

intuitive visualization and understanding of decision-making

procedures. The algorithm iteratively divides the input space using

features, generating nodes signifying decision points and leaves

indicating ultimate outcomes. Deci- sion Trees excel in situations

where the connections between input features and target variables

are intricate or non-linear.

E. Random Forest(RF)

Random Forest stands as a robust ensemble learning method in

machine learning, versatile for both regression and clas- sification

tasks. In its training phase, it generates numerous decision trees by

chhosing random subset of the training data and a random

selection of the characteristics. These individual trees’ predictions

are then combined to produce the final prediction. Generally,

classification tasks utilize the mode, while regression tasks employ

the mean. Random Forest mitigates overfitting through feature

selection and data randomization, resulting in a dependable and

precise model. Its standout features encompass superior prediction

accuracy, adept management of high-dimensional data, resilience

against overfitting, and the ability to evaluate feature importance,

cementing its widespread recognition in the field.

IV. COMPARISON ANALYSIS

Recurrent models such as LSTM networks are recognized for

their capacity to grasp sequential dependencies within data,

rendering them apt for discerning the intrinsic organization of code.

However, LSTMs may struggle with their computational intensity,

especially with large datasets. Convolutional Neural Networks

“Python source code Analysis for Bug Detection using Transformers”

3776 Puneeth Batchu1, ETJ Volume 9 Issue 04 April 2024

(CNNs) are adept at capturing local patterns and hierarchical

representations in code but might lack the capacity to capture long-

term dependencies. Bidirectional LSTM Re- current Neural

Networks (Bi-LSTM-RNN) attempt to address this limitation by

capturing dependencies in both forward and backward

directions, enhancing their ability to understand code intricacies.

On the other hand, Random Forest, an ensem- ble method, provides

robust predictions by combining multiple decision trees. It offers

faster training times and is less sensi- tive to the need for large

datasets, making it a pragmatic choice for bug detection,

particularly when computational resources are limited. The

interpretability of Random Forest can also be advantageous,

aiding in understanding the reasoning behind bug predictions.

The selection among these algorithms involves trade-offs. For

instance, deep learning models like LSTM and Bi-LSTM- RNN

excel in capturing sequential and long-range depen- dencies but

may demand substantial computational resources. CNNs leverage

local patterns but may not capture long-term dependencies as

effectively. Random Forest, while computa- tionally efficient and

interpretable, may have limitations in modeling intricate code

relationships. The selection should be in line with the precise

needs of the bug detection task, taking into account factors like

dataset magnitude, interpretability, and the availability of

computational resources. Practical ex- perimentation and fine-

tuning are essential to determine the algorithm that best suits the

characteristics of the codebase and the bugs targeted for

detection.

V. CONCLUSION

The research offers a comprehensive overview of con-

temporary methodologies of bug detection, spanning various

aspects of software development. It begins by emphasizing the

importance of assisting novice programmers through feed- back

systems and leveraging LSTM-based approaches for problem

identification, showcasing the potential of ML to streamline

coding processes and boost productivity. Following this, diverse

bug detection techniques are explored, ranging from entropy-

based metrics to probabilistic n-gram LM’s and symbolic

constraint encoding for trace-based recognition in Python code.

These studies underscore the diversity of meth- ods employed

across different programming languages.

Furthermore, the research highlights the significance of

benchmarking endeavors and the implementation of innovative

bug analysis tools, such as knowledge graphs, orthogonal defect

classification, and DL models like NP-CNN and HOP- PITY.

These tools leverage conceptual representations, exploit the

sequential nature of codebase, and utilize graph transfor- mations

to improve accuracy and efficiency in bug detection. Together,

these discoveries play a pivotal role in enhancing bug

identification processes, revealing effective strategies that

harmonize traditional software engineering principles with cutting-

edge advancements in machine learning, ultimately bolstering

program reliability.

REFERENCES

1. Y. Teshima and Y. Watanobe, “Bug detection based on

lstm networks and solution codes,” in 2018 IEEE

International Conference on Systems, Man, and

Cybernetics (SMC), pp. 3541–3546, 2018.

2. A. Kaur, K. Kaur, and D. Chopra, “Entropy based bug

prediction using neural network based regression,” in

International Conference on Computing,

Communication Automation, pp. 168–174, 2015.

3. S. Wang, D. Chollak, D. Movshovitz-Attias, and L. Tan,

“Bugram: Bug detection with n-gram language models,”

in 2016 31st IEEE/ACM International Conference on

Automated Software Engineering (ASE), pp. 708–719,

2016.

4. Z. Xu, P. Liu, X. Zhang, and B. Xu, “Python predictive

analysis for bug detection,” in Proceedings of the 2016

24th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, FSE 2016, (New

York, NY, USA), p. 121–132, Association for

Computing Machinery, 2016.

5. P. Gyimesi, B. Vancsics, A. Stocco, D. Mazinanian,

Beszédes, R. Fer- enc, and A. Mesbah, “Bugsjs: a

benchmark of javascript bugs,” in 2019 12th IEEE

Conference on Software Testing, Validation and

Verification (ICST), pp. 90–101, 2019.

6. C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun,

P. Devanbu,

 S. Forrest, and W. Weimer, “The manybugs and

introclass benchmarks for automated repair of c

programs,” IEEE Transactions on Software Engineering,

vol. 41, no. 12, pp. 1236–1256, 2015.

 X. Zhang, R. Yan, J. Yan, B. Cui, J. Yan, and J.

Zhang, “Excepy: A python benchmark for bugs with

python built-in types,” in 2022 IEEE International

Conference on Software Analysis, Evolution and

Reengineering (SANER), pp. 856–866, 2022.

 T. Chappelly, C. Cifuentes, P. Krishnan, and S. Gevay,

“Machine learning for finding bugs: An initial report,” in

2017 IEEE Workshop on Machine Learning Techniques

for Software Quality Evaluation (MaLTeSQuE), pp. 21–

26, 2017.

“Discovering bug patterns in javascript,” in Proceedings

of the 2016 24th ACM SIGSOFT International

Symposium on Foundations of Software Engineering,

FSE 2016, (New York, NY, USA), p. 144–156,

Mesbah,

7.

8.

9. Q. Hanam, F. S. d. M. Brito, and A.

“Python source code Analysis for Bug Detection using Transformers”

3777 Puneeth Batchu1, ETJ Volume 9 Issue 04 April 2024

Association for Computing Machinery, 2016.

identifying bug entities and relations for bug analysis,”

in 2019 IEEE 1st International Workshop on Intelligent

Bug Fixing (IBF), pp. 39–43, 2019.

“Analyzing bug fix for automatic bug cause

classification,” Journal of Systems and Software, vol.

163, p. 110538, 2020.

to name-based bug detection,” Proc. ACM Program.

Lang., vol. 2, oct 2018.

features from natural and programming languages for

locating buggy source code,” in Proceedings of the

Twenty-Fifth International Joint Conference on

Artificial Intelligence, IJCAI’16, p. 1606–1612, AAAI

Press, 2016.

locate buggy files by exploiting the sequential nature of

source code,” in Proceedings of the 26th International

Joint Conference on Artificial Intelligence, IJCAI’17, p.

1909–1915, AAAI Press, 2017.

Wang, “Hoppity: Learning graph transformations to

detect and fix bugs in programs,” in International

Conference on Learning Representations, 2020.

10. D. Chen, B. Li, C. Zhou, and X. Zhu, “Automatically

11. Z. Ni, B. Li, X. Sun, T. Chen, B. Tang, and X. Shi,

12. M. Pradel and K. Sen, “Deepbugs: A learning approach

13. X. Huo, M. Li, and Z.-H. Zhou, “Learning unified

14. X. Huo and M. Li, “Enhancing the unified features to

15. E. Dinella, H. Dai, Z. Li, M. Naik, L. Song, and K.

